
Schedule-based Service Choreographies for
Real-Time Control Loops

Thomas Kothmayr, Alfons Kemper
Technische Universität München, Germany

{kothmayr, kemper}@in.tum.de

Andreas Scholz, Jörg Heuer
Corporate Technology, Siemens AG

{andreas.as.scholz, joerg.heuer}@siemens.com

Abstract—Today’s manufacturing industries are undertaking
efforts to further increase the flexibility of their facilities. One
way to achieve this goal is the development of distributed, service-
oriented architectures (SOA). A challenge for SOAs is the contin-
ued support of the real-time requirements imposed by industrial
control tasks. This paper presents an approach for executing
service choreographies with strong real-time guarantees without
a central point of control. Engineers can design the automation
workflow as a graph of communicating tasks which are then
assigned to devices in the network. Our method generates a
cyclic, non-preemptive schedule for each device to achieve global
cooperation between them. Using an approach that combines
several heuristics, a valid solution for over 99% of the 1.2 million
test cases was found. On average, this method was over two orders
of magnitude faster than an approach based on MIP-solvers.

I. INTRODUCTION

New manufacturing strategies, such as agile manufacturing
and mass customization, encompass the vision of rapid engi-
neering and innovation. This vision mandates further improve-
ments in the area of manufacturing systems [1]. Traditional
manufacturing systems provide cost-effective production at
high volumes. These centralized, monolithic and scan-based
control systems are optimized for a given physical and network
configuration. The modularization and reuse of source code
running on these systems is hindered by a tight coupling
with their environment. Furthermore, installation and setup
comprise up to one third of their life-cycle costs [2].

Advances in hardware to support manufacturing are al-
ready evident: Industrial Ethernet is gaining traction [3] while
smarter embedded devices are performing an increasing num-
ber of orthogonal tasks. Recent developments include the roll
out of smart field devices, like Ethernet-equipped sensors
and actuators. In the automotive and avionic industries a
different process with similar results can be observed. Sub-
systems are consolidated through a single real-time commu-
nication network to reduce weight and costs. In both domains
the result is a hardware architecture of multiple networked
processing units. The pressure to innovate is now focused
on software where development approaches are shifting to
model-driven [4] or service-oriented [5] methodologies. Both
approaches mandate decomposing an embedded application
into a set of interdependent tasks. The two most common
design paradigms for distributed real-time systems are thus the
traditional hierarchical approach and the emerging approach,
which we refer to as the SOA approach in this paper.

The SOA-paradigm is designed to address the weaknesses,
such as inflexibility and high setup costs, of the traditional ap-
proach to automation. The strengths of SOA lie in its flexibility
and adaptability. Messages are sent in a push-based manner
making more efficient use of the limited communication re-
sources than the traditional scan or pull-based communication
pattern. Extensive research efforts have been undertaken to
push the performance envelope of SOA (or more specifically,
web-service) technology on constrained embedded devices [6].
These endeavors have seen SOA solutions developed for lower
and lower layers of the automation pyramid [5]. It is, however,
difficult to verify the emergent properties of distributed event-
based systems. Implementations with centralized control are
therefore likely to be favored in the near future [7]. Centralized
control is realized through a service orchestration which is
executed by an orchestration engine that invokes each of the
individual services composed in a workflow [8]. While such
an orchestration represents an improvement over the traditional
model, the full impact of the SOA paradigm could be realized
through service choreographies providing global cooperation
without central coordination.

Our proposal for a real-time service oriented architecture
(rtSOA) tries to reconcile both approaches by enabling global
coordination of field devices through deterministic commu-
nication and computation schedules with verifiable real-time
properties. Similar to the orchestration in the SOA paradigm,
the schedules are derived from a model-based representation of
the control loop. During design and development, the control
loop is modeled as a directed acyclic graph (DAG) of depen-
dent tasks, similar to an automation workflow incorporating
individual services in a SOA approach We therefore also
refer to the task-DAG as workflow. The workflow carries
global timing information, such as its global deadline and
period. Timing restrictions on a per-job level are derived
from global constraints when binding a set of workflows to
devices connected through a real-time network. This binding is
performed by a skilled engineer who is supported by the rtSOA
planning tool. rtSOA generates a static, cyclic, non-preemptive
schedule for each device that includes all relevant tasks from a
real-time workflow. The network communication is implicitly
included in the generated schedules as each task is scheduled
to finish before a certain communication deadline and the
receiving tasks on different devices are only scheduled to start
after the delivery of the relevant data from their predecessors.978-1-4673-7929-8/15/$31.00 c©2015 IEEE

When specifying workflows, an engineer is freed from
timing constraints imposed by the hardware and network.
New devices can quickly be integrated into the existing
infrastructure by deploying those sub-tasks of a workflow
that are specific to the device and subsequently generating
new schedules that include the device. While we focus on
applications in the context of manufacturing, rtSOA could
also be applied in other areas, e.g. the automotive or avionic
industries. The architecture of a system developed following
the rtSOA approach is depicted in Figure 1.

t1
t 2

t6

Machine A

t3

Machine B

t4

t5

Machine C

A B C A B C A B C
Network Timeline

Fig. 1: Devices cooperate in a distributed service choreography
by locally executing cyclic schedules and communicating over
a deterministic real-time TDMA network. Gaps in the machine
time-line and white slots on the network time line represent
unused network and computational resources. The hatched
areas indicate resources used by an example workflow whereas
the gray areas indicate resources used by other applications.
Arrows represent data dependencies.

Related work on SOAs, which we outline in Section II,
has often followed an approach based on a central service or-
chestrator. Our architecture, detailed in Section III, is targeted
at constrained embedded devices and must therefore deliver
a lightweight service choreography that is, nevertheless, able
to achieve hard real-time guarantees. From a suitable system
specification, a planning process is triggered which produces a
cyclic, non-preemptive schedule for each device. The feasibil-
ity of this architecture hinges on the ability to quickly find a
valid schedule across all involved devices. We have evaluated
heuristics for deadline assignment [9], [10] and scheduling
[11] in previous work [12], [13]. This paper proposes the
use of multi-processor scheduling algorithms to combine both
tasks. We outline the employed heuristics discussed in the
literature and our own heuristics in Section IV. The evaluation
of 1.2 million different system configurations (Section V)
shows that our approach generates valid schedules for over
99% of the examined cases. This constitutes a significant
improvement over our previous work [12] which only achieved
valid solutions in 85% on the same data set.

The contributions of this paper are: The demonstration
that heuristics are an attractive alternative to state of the
art mixed integer program (MIP) solvers for determining
distributed service choreographies, an extensive evaluation of
deadline assignment and distributed scheduling heuristics on
over 1.2 million feasible workflows, and the identification of
several new or adapted heuristics for scheduling of distributed
workflows with fixed task-placement.

II. RELATED WORK

A shift toward service-oriented architectures in the automa-
tion domain is evident both in academia as well as in industry.
Section II-A will briefly outline important specifications in the
industrial domain before Section II-B presents related work
with a focus on EU research projects dealing with SOA for
industrial applications. Section II-C places our work in context
with other methods for deployment generation and scheduling.

A. Industry

The two most prominent specifications concerning service
orientation for industrial devices are the Devices Profile for
Web Services (DPWS) [14] and the Object Linking and Em-
bedding for Process Control Unified Architecture (OPC UA)
[15]. Both specifications are conceptually similar. That is,
they implement a SOA through Web Services and rely on
built-in base services for discovery and service reservation.
The main difference between the two is their intended target
area. OPC UA is a service-oriented version of the original
OPC architecture and its main mission is to connect industrial
devices to applications for control and supervision on higher
levels of the automation pyramid [16]. It is therefore not
directly aimed at the communication between the devices
themselves. In contrast, DPWS is a web service middleware
and profile that aims to constrain the WS-* set of standards
to make them suitable for embedded use. DPWS is aimed
directly at the devices performing the automation task on the
lowest levels of the automation pyramid. Cândido et. al [16]
give a more detailed comparison of DPWS and OPC UA.

In terms of architecture, rtSOA is closely related to DPWS,
meaning it is also aimed at the device level and meant to enable
peer-to-peer communication. However, rtSOA is aimed at hard
real-time control loops instead of general purpose discovery
and eventing which are the aims of DPWS. Discovery, and
especially device description, could be implemented following
the DPWS specification. Thus, rtSOA can be seen as orthog-
onal to industry standards such as DPWS.

B. EU projects

The SIRENA project provided the first embedded DPWS
stack [17] and the closely related SODA project extended the
SIRENA framework by providing a toolkit for manageabil-
ity, orchestration and security [18]. Together, these projects
proved the feasibility of web services on embedded devices.
The RI-MACS project used DPWS compliant services for
soft real-time and best-effort tasks [19]. For performance
reasons, RI-MACS chose a separate communications stack
in addition to DPWS to fulfill hard real-time requirements.
The SOCRADES project built on the SIRENA and SODA
results to further the vertical cross-layer integration between
shop floor and enterprise systems [20]. The AESOP project
investigated the feasibility and limits of using a SOA-based
approach inside control loops [5]. By implementing several
prototypes, the project closely investigated the performance
implications of using Web-Services for the concurrent control
of several thousand devices.

SIRENA, SODA and SOCRADES achieved the horizon-
tal integration of industrial control devices with higher-level
enterprise systems. Since our work on rtSOA is focused on
providing hard real-time guarantees on the underlying device
level, RI-MACS, and especially AESOP, can be considered
conceptually similar projects. AESOP showed the feasibility
of integrating embedded devices in a control loop through a
SOA. In our opinion, message exchange in a control loop is
possible by leveraging one of the protocol stacks investigated
by AESOP [5]. Additionally, work performed in the context of
the AESOP project has already pointed out that a distributed
choreography approach to SOA is preferable to the classical
orchestration-based approach [21]. Our work focuses on the
central planning required to achieve performant, hard real-time
choreographies for devices in a tight control loop.

C. Scheduling and deployment generation

The field of multicore real-time scheduling is closely related
to our approach. Davis and Burns conducted a survey over hard
real-time scheduling for multiprocessor systems [22]. Much of
the work they outlined uses a preemptive task model. Since
rtSOA is targeted at resource constrained devices, which might
not have a real-time operating system (RTOS) that supports
task preemption, we use a non-preemptive model. Multicore
scheduling usually also neglects communication costs between
tasks, because the tasks are assumed to share the same
memory. We consider a distributed system model requiring
detailed attention to communication costs and timing.

In this light, our work is closely related to the field of dis-
tributed scheduling. As in the multicore scheduling problem,
a distributed scheduling algorithm essentially should solve
two problems. 1) The allocation problem, i.e., deciding on
which processor or machine a task should run, and 2) the
priority problem, i.e., in which order the tasks should be
executed [22]. Additionally, a distributed scheduling algorithm
should consider the communication delay between machines.
In this paper, we study the performance of several well-known
distributed scheduling algorithms [23]–[26] in the context
of fixed task-placement and TDMA-communication between
devices (Section V). Fixed task-placement means that tasks are
not allocated algorithmically, but manually (c.f. Section III).

Our previous work [12] followed a two-step heuristic ap-
proach where the heuristics were not aware of the underly-
ing TDMA-network timing. In this paper we use the best-
performing heuristic for soft real-time workflows [9] as a
point of reference. We also introduce two new heuristics for
distributed scheduling with fixed task-placement (Section IV).

Another related area of research focuses on automatic sys-
tem deployment and distributed scheduling. Voss and Schätz
[4] use SMT-solvers to find both a suitable task placement
and schedules for each device. Our method favors a fixed
task-placement and subsequently generates individual device
schedules through heuristics. Heuristics outperform solutions
based on satisfiability solvers by orders of magnitude, in terms
of run time, while solving 99% of the examined problems, as
discussed in our previous work and in Section V of this paper.

III. SYSTEM ARCHITECTURE

There are two separate domains that need to be speci-
fied when deploying a SOA in the industrial context: the
automation workflow and the infrastructure on which it will
be executed. The infrastructure comprises the devices which
partake in the automation process, the physical capabilities of
each device (e.g., provision of sensor data, high computational
capability, etc.) and the characteristics of the network which
connects the devices. Previous work has demonstrated that web
service technology can be leveraged in the embedded context
and efforts to standardize DPWS are well under way. The
capabilities of a device can therefore be described, advertised
and discovered through industry standards (Section II-A).
Service discovery at run-time is not required for planning and
deploying the tasks of the control loop but offers possibilities
for seamless integration into less time critical applications.
Similarly, the rtSOA planner does not require run-time dis-
covery of network particularities. Our working assumption is
that the network configuration, including addressing, message
delay and TDMA slot assignment, is made available to the
planner together with matching device descriptions.

The goal of the rtSOA system is to provide a distributed
service choreography: each device fulfills its part to coopera-
tively realize the control loop. The target platforms for rtSOA
span from large control systems to very small embedded
devices, such as smart sensors or actuators. We use the term
smart device to describe a sensor or actuator attached to a
system on a chip with several kilobytes of memory, a CPU
clock rate of a few Megahertz and integrated networking
capability. We do not assume that any advanced real-time
operating system (RTOS) is available. The output of the rtSOA
planning stage is a static, non-preemptive, cyclic schedule for
each device. The job timing in each schedule is adjusted in
such a way that the devices cooperate in a distributed service
choreography without a centralized point of control. Advanced
RTOS features are thus not required but can be leveraged to
provide additional quality of service (QoS) levels beneath the
critical RT task. Multicore CPUs are not explicitly modeled but
could be represented by pinning a separate schedule to each
core. Timing side effects from parallel execution are outside
of the scope of our current architecture.

Because we need to provide real-time guarantees for the
control loop in a distributed system, the network also needs to
offer these guarantees. We therefore assume all devices in the
control loop are connected by a real-time capable network with
bounded message delays. The predominant message exchange
mode in industrial control applications is cyclic; thus, we also
assume a cyclic communication model. In this model, each
network cycle is divided into a number of timeslots that are
assigned to a device, i.e., TDMA. We do not assume a master-
slave relationship on the system or network level. Each device
can potentially send data to any other device in the network.
The tight time-synchronization required for distributed service
choreographies are also needed by the TDMA-network so
there is no additional overhead.

Left

camera

Right

camera

Image

processing
Radar

Reported

distance

Desired

speed

Speed

sensor

Desired

distance

Actuate

brakes

Actuate

throttle

Distance

control

(a) Task in the embedded applica-
tion

A1 A2

B1A3

A4

A5

F1 F2

E1

D1

C1

D
e

a
d

li
n

e
 =

 2
.5

 m
s,

 P
e

ri
o

d
 =

 3
 m

s

(b) Workflow layout and global
timing constraints

Main ECU

Sensors B

Sensors A

A1

250µs

A2

250µs

B1

500µs

A3

150µs
A4

100µsA5

100µs

F1

200µs

F2

200µs

E1

250µs

D1

500µs

C1

150µs

Deadline = 2.5 ms, Period = 3 ms

(c) Task assignment and task
WCET on assigned machines

Main ECU

Sensors B

Sensors A

A1

<900µs

A2

<900µs

B1

<1400µs

A3

<1400µs
A4

<1550µsA5

<2050µs

F1

<2500µs

F2

<2500µs

E1

<2300µs

D1

<2050µs

C1

<1550µs

Deadline = 2.5 ms, Period = 3 ms

(d) Local timing constraints as
input for scheduling algorithm

TDMA

Main ECU

Sensors B

Sensors A

0µs: TDMA Start 1000µs: TDMA Start 2000µs: TDMA Start

Main SensA SensB Main SensA SensB Main SensA

A2

A1

A3 A4 A5

B1 runningB1 idle C1 D1 E1

F2

running
F2 idle

F1

running
F1 idle

0µs 200µs 400µs 600µs 800µs 1000µs 1200µs 1400µs 1600µs 1800µs 2000µs 2200µs 2400µs

(e) Simulation of a three machine schedule for the workflow in Figures (a) - (d), generated by heuristics. Grey blocks denote task execution,
white blocks show time spent waiting for messages from preceding tasks. Hatched blocks show the TDMA-slots.

Fig. 2: A complex workflow in an adaptive cruise control scenario

Figure 2 depicts an overview of the planning steps necessary
in our architecture. We chose an adaptive cruise control system
as an example. In this example, a 3D-vision system is used
together with a radar system to measure the distance to
vehicles in front of the object vehicle and regulate vehicle
acceleration and deceleration accordingly. The resulting work-
flow is shown in Figure 2a. The global deadline and period of
the workflow are derived from physical requirements and / or
control theory. Once the automation task has been modeled
according to the modular decomposition (Figure 2a), these
global deadlines are attached to the workflow (Figure 2b).
Because embedded systems often require platform specific
implementations for each functional module and the modules
themselves make use of sensors and actuators, the assignment
of jobs to machines can be viewed as a design-time decision
performed by a skilled engineer. For any given assignment,
the worst case execution time (WCET) of each task in the
workflow can be measured or estimated. This estimation leads
to the situation shown in Figure 2c where the global deadline
and period of the workflow are known and the machine
placement and WCET of each workflow task have been
determined. Afterwards, the heuristics take over: a deadline
assignment algorithm (Section IV-A) can be used to generate
local constraints (Figure 2d), which are then used to generate
a matching task ordering. Alternatively, a suitable distributed
scheduling algorithm (Section IV-B) can directly determine
the task ordering. In the final step, the system is verified
through discrete event simulation, the output of this simulation
step for our example is shown in Figure 2e. The fundamental
difference between the planning and the execution phase of the
control loop is important: whereas planning and scheduling are
performed in a centralized, offline fashion, the execution of the
workflow is distributed without a central point of control.

In communicating systems with tight timing requirements,
the network configuration plays an essential role in finding
valid schedules. We cannot simply place an upper limit on
the communication delay and add it to the WCET of each
task as this action would prevent us from finding a feasible
schedule in Figure 2e and many other situations. Instead,
timing information about each individual TDMA slot has to
be considered during the schedule synthesis. As shown in
our example, the slots may be distributed irregularly. For
example, when an application is sharing the same communi-
cation medium with a legacy application and was granted only
the previously unused time slots. Another example would be
communication protocols, such as Flexray, which set aside a
portion of each cycle for lower priority traffic. We therefore
consider the available TDMA slots as an input to our schedule
synthesis instead of searching for a suitable slot assignment for
a given schedule. Once a candidate service choreography has
been generated it should be verified in terms of its functional
and temporal correctness. We use a simulation environment
to achieve this task. To verify temporal correctness, only the
temporal characteristics of each job on its assigned machine
are required (i.e., its WCET). This allows for an automated
generation of a simulation model by the rtSOA planner.
The schedules generated by the planner are simulated on
the infrastructure described by its input and are checked for
deadline violations. Compared to our previous work [12],
we follow the same approach as outlined in Figure 2, but
through the use of more advanced scheduling algorithms, we
are able to generate a higher number of feasible schedules
(Section V). Another benefit of directly using distributed
scheduling algorithms (Section IV-B) after the state shown
in Figure 2c is the elimination of step 2d. The heuristics will
directly generate schedules for the step shown in Figure 2e.

IV. HEURISTICS

This section provides an intuitive, high level overview of the
heuristics employed in our evaluation. Our previous work [13]
identified Potts’ heuristic [11] as the best choice for scheduling
after the use of a deadline assignment heuristic as described in
Section IV-A. Non-preemptive Earliest Deadline First (EDF) is
a good alternative. This second step is not required when using
a distributed scheduling heuristic as described in Section IV-B.

The problem is modeled as a directed, acyclic graph of tasks
which we call a workflow. The edges in the graph represent
data flow between individual tasks. Each task is annotated with
a worst case execution time (WCET). The range of possible
start and completion times of the task can be constrained by
setting a task release time and deadline. Each workflow is
annotated with a global deadline and the period after which
the workflow is repeated.

The overall goal is to find a suitable task ordering for a given
assignment of tasks to machines. Tasks on a single machine
cannot overlap or be preempted. This task ordering must fulfill
all local deadlines (on the task level), release times and global
deadlines (on the workflow level). A task cannot be started
before all transitively preceding tasks have been completed.

A. Deadline Assignment Heuristics

In previous work [12], we determined that deadline assign-
ment heuristics derived from the work of Kao and Garcia-
Molina [9] are effective methods for our application. The
three best heuristics were the Proportional Deadline (PD),
Equal Slack (EQS) and Equal Flexibility (EQF) heuristics.
All three heuristics work by grouping tasks into levels by
the maximum hop distance from either the sources of a DAG
(EQS, EQF) or its sinks (PD). The PD heuristic then simply
assigns deadlines proportional to the level of each task. For
example, in a graph with 5 levels, each level would be assigned
20% of the available run time. In contrast, the EQS and EQF
heuristics distribute slack, defined as the difference between
the sum of the task’s execution time and the overall deadline
of the workflow-DAG, between the levels. EQS assigns an
equal amount of slack to each level in the DAG whereas EQF
scales the assigned slack by the weight of the execution time
of each level. With EQF, levels with longer WCETs get more
of the slack.

We modified these heuristics further by introducing a cor-
rective factor for communication over the TDMA network. In
a first step, the mean communication delay µ is calculated for
each machine in the TDMA network. This number specifies
the average time a task has to wait for the next available
TDMA slot on a given machine. If any task in a level has
a successor on a different machine, the maximum µ of the
communicating machines is added as a “hidden” level repre-
senting a virtual processing time. The TDMA-modified Equal
Slack (EQS-TDMA) and TDMA-modified Equal Flexibility
(EQF-TDMA) heuristics then allocate the slack between the
normal, non-hidden, levels the same way as their non-modified
counterparts. This method leads to an improved performance
of the heuristics as explained in Section V.

We also propose deadline assignment based on the Earliest
Release and Latest Finish Time (ERT-LFT) of each task.
The earliest release time (ERT) of each task is determined
by traversing the DAG from its sources and calculating the
minimum time at which all previous tasks have finished and,
if the tasks are located on other machines, have sent their data
via the next available TDMA-slot. Similarly, the latest finish
time (LFT) is obtained by attaching a deadline to each task
such that its successor can finish during the global workflow
deadline. In the ERT-LFT heuristic, the ERT is used as the
release time of a task while the LFT is used as its deadline.

B. Distributed Scheduling Heuristics

Scheduling algorithms for tasks with communication usu-
ally comprise two different phases [22]. First, a task selection
phase, also called the prioritization phase, which determines
which task should be scheduled when. The second phase, a
processor selection phase, determines the processor on which
the task should be executed. In our scenario, the processor
selection is fixed a priori, which means we focus on the task
ordering mechanism of each heuristic.

The Heterogeneous Earliest Finish Time (HEFT) [24] and
Dominant Sequence Clustering (DSC) [26] heuristics are
examples for list-scheduling algorithms that maintain a fixed
priority list of tasks that is calculated once. Both heuristics
use the length of the longest path from a task t, including
the communication times, to a sink of the DAG for their task
prioritization. We will use exit(t) to denote this path. HEFT
simply ranks tasks by increasing exit(t). The DSC heuristic
uses the ERT of t plus exit(t) as the priority of t.

The Mobility Directed (MD) [25] heuristic chooses tasks
based on their mobility, defined as the difference between a
task’s LFT and its earliest start time (EST), divided by the
task’s WCET. Although the EST is similar to the ERT, it is
recalculated after each task selection and takes into account
the scheduling time of the other workflow tasks.

Earliest Task First (ETF) [23] picks a task among the ready
tasks, meaning tasks whose predecessors have already been
scheduled, by choosing the task with the minimum EST. Ties
are broken by the task with the smallest LFT minus WCET.

We propose two additional scheduling heuristics: an adapted
version of Potts’ heuristic [11] that works in a distributed
environment with fixed task-placement, and the Least Delay
heuristic (LD).

The adapted Potts’ heuristic is set up by picking the task
with the minimum LFT from the available ready set, meaning
the current time on the task’s machine is equal or greater than
the task’s EST. This initial step is also known as Schrage’s
heuristic [11]. In most cases, this initial step yields valid
schedules, meaning the DAG sinks do not violate the workflow
deadline in the schedules. If the first pass of Schrage’s heuristic
was unsuccessful, Potts’ heuristic then analyzes the resulting
schedules and looks at task A, called the critical task, violating
its LFT. This means there could be another task B with a
smaller EST than A but with a larger latest starting time (LST)
scheduled before A because A was not ready at that moment.

16 32 48 64

70%

80%

90%

100%

(a) Number of Jobs

E
ffi

ci
en

cy

GNP Layer TGFF Orders

(b) Workflow generation method
12.5% 25% 37.5% 50% 62.5% 75%

(c) Edge generation chance

2 3 4 5 6 7 8 9 10 12 14 16

70%

80%

90%

100%

11 13 15

(d) Number of levels in workflow

E
ffi

ci
en

cy

2 4 8

(e) Machines
12.5% 25% 37.5% 50% 62.5% 75%

(f) Schedule utilization

combined
HEFT
DSC
MD
ETF

Potts’
LD

PD-EQS-EQF
EQS/EQF-TDMA

Propagate

Fig. 3: Evaluation of deadline assignment heuristics
If such a task B, also called the interference task, exists on
the same machine as A, we introduce an additional edge in
the DAG from A to B to ensure that A will be scheduled
before B. If no such task exists on the same machine as the
critical task, we look for an interference task B′ on a different
machine. We then take B′ as the new critical task and try to
locate an interference task C on the same machine as B′. If
C exists, we introduce an additional edge from C to B′ and
continue as previously described. The modified workflow is
then rescheduled with Schrage’s heuristic.

The LD heuristic tries to determine the implications of
scheduling each task in the ready set. The heuristic schedules
each of the tasks in the ready set in a “what-if” manner
and determines the EST of all tasks in the DAG based on
this speculative scheduling. The resulting EST of each sink
task is compared to its EST before the speculative scheduling,
yielding a value for the expected delayt of the sink task t. The
maximum delayt yields the delay for the entire workflow. The
heuristic now chooses the task from the ready set that resulted
in the minimum workflow delay. Naturally, this heuristic has
a high run-time complexity, but our evaluation (Section V)
shows it can generate solutions in many cases where the other
heuristics failed to do so.

V. EVALUATION

Since industrial use cases span a wide range of potential
layouts of the resulting task graphs, we rely on synthetic
benchmarks which are based on several well-known graph
generation methods [27]. The Erdős-Rènyi G(n, p) method
generates an unbiased DAG out of all possibilities. Therefore,
50% of the total number of test cases were generated with this
method. The Layer-by-Layer method allows specifying the
maximum depth of the graph and was developed specifically
for validation of scheduling algorithms. 20% of the test cases

were generated with this method. Similarly, Task Graphs for
Free (TGFF) is another method of generating task graphs for
the validation of scheduling methods. Another 20% of the
test cases were generated with TGFF. The Random Orders
method generates a partial order (i.e. a DAG) by intersecting
several total orders, which are constructed by shuffling the
nodes of the graph. This method generates graphs with all
transitive edges and was used for generating the last 10% of
the test cases.

We generated a total of 1 200 000 feasible workflows using
the aforementioned ratios with either 16, 32, 48 or 64 tasks
which were randomly assigned to either 2, 4 or 8 machines,
which were connected via TDMA. The feasibility of the
workflows was verified through a MIP-solver1, the details
of the problem formulation are given in our previous work
[12]. To avoid bias in the evaluation, the amount of feasible
workflows is largely the same for each combination of machine
count and task count, i.e. there are 100 000 workflows for
each combination. The workflows all have a common global
deadline and period of 10 ms, which is also the length of a
TDMA round. TDMA slots of 120µs length (the time needed
to transmit 1500 bytes, which is the largest allowed UDP
packet size, over 100 Mbit Ethernet) were assigned in round-
robin style to the machines. The workflows were then run
through the heuristics pipeline, described in Section III, to
determine the percentage of feasible solutions to be found by
a heuristic. We call this measure the efficiency of the heuristic.
A value of 100% means a heuristic was able to solve all of
the same problems that the MIP-solver determined as feasible,
a value of 50% means half of the problems were solved. The
efficiency of the MIP-solver is 100%, therefore it is not shown
in the performance plots below.

1Gurobi, version 6.0 (http://www.gurobi.com/)

TABLE I: Cross Evaluation of Heuristics2

EQS EQF PD EQS TDMA EQF TDMA Propagate HEFT DSC MD ETF Potts’ LD

EQS - better: 4.34%
worse: 4.28%

better: 6.59%
worse: 7.37%

better: 6.75%
worse: 2.61%

better: 6.74%
worse: 2.62%

better: 15.8%
worse: 1.37%

better: 12.5%
worse: 3.01%

better: 18.2%
worse: 0.84%

better: 12.5%
worse: 2.54%

better: 18.7%
worse: 0.58%

better: 19.1%
worse: 0.46%

better: 17.3%
worse: 1.13%

EQF better: 4.28%
worse: 4.34% - better: 6.57%

worse: 7.40%
better: 6.73%
worse: 2.64%

better: 6.72%
worse: 2.66%

better: 15.8%
worse: 1.38%

better: 12.5%
worse: 3.04%

better: 18.2%
worse: 0.85%

better: 12.5%
worse: 2.55%

better: 18.6%
worse: 0.58%

better: 19.0%
worse: 0.46%

better: 17.3%
worse: 1.13%

PD better: 7.37%
worse: 6.59%

better: 7.40%
worse: 6.57% - better: 9.49%

worse: 4.57%
better: 9.48%
worse: 4.58%

better: 16.9%
worse: 1.68%

better: 12.6%
worse: 2.27%

better: 18.9%
worse: 0.73%

better: 14.0%
worse: 3.28%

better: 19.7%
worse: 0.81%

better: 20.1%
worse: 0.68%

better: 18.7%
worse: 1.26%

EQS TDMA better: 2.61%
worse: 6.75%

better: 2.64%
worse: 6.73%

better: 4.57%
worse: 9.49% - better: 3.36%

worse: 3.38%
better: 12.2%
worse: 1.87%

better: 9.50%
worse: 4.10%

better: 14.4%
worse: 1.13%

better: 9.60%
worse: 3.71%

better: 14.8%
worse: 0.84%

better: 15.1%
worse: 0.68%

better: 13.7%
worse: 1.65%

EQF TDMA better: 2.62%
worse: 6.74%

better: 2.66%
worse: 6.72%

better: 4.58%
worse: 9.48%

better: 3.38%
worse: 3.36% - better: 12.2%

worse: 1.87%
better: 9.51%
worse: 4.08%

better: 14.4%
worse: 1.12%

better: 9.62%
worse: 3.70%

better: 14.8%
worse: 0.84%

better: 15.2%
worse: 0.68%

better: 13.7%
worse: 1.64%

Propagate better: 1.37%
worse: 15.8%

better: 1.38%
worse: 15.8%

better: 1.68%
worse: 16.9%

better: 1.87%
worse: 12.2%

better: 1.87%
worse: 12.5% - better: 3.19%

worse: 8.16%
better: 5.45%
worse: 2.51%

better: 3.29%
worse: 7.78%

better: 5.02%
worse: 1.40%

better: 5.21%
worse: 1.09%

better: 5.35%
worse: 3.64%

HEFT better: 3.01%
worse: 12.5%

better: 4.04%
worse: 12.5%

better: 2.27%
worse: 12.6%

better: 4.10%
worse: 9.50%

better: 4.08%
worse: 9.51%

better: 8.16%
worse: 3.19% - better: 8.76%

worse: 0.85%
better: 6.15%
worse: 5.66%

better: 9.80%
worse: 1.21%

better: 10.2%
worse: 1.14%

better: 9.23%
worse: 2.54%

DSC better: 0.84%
worse: 18.2%

better: 0.85%
worse: 18.2%

better: 0.73%
worse: 18.9%

better: 1.13%
worse: 14.4%

better: 1.12%
worse: 14.4%

better: 2.51%
worse: 5.45%

better; 0.85%
worse: 8.76% - better: 1.16%

worse: 8.58%
better: 3.00%
worse: 2.32%

better: 3.37%
worse: 2.19%

better: 3.00%
worse: 4.23%

MD better: 2.54%
worse: 12.5%

better: 2.55%
worse: 12.5%

better: 3.28%
worse: 14.0%

better: 3.71%
worse: 9.60%

better: 3.70%
worse: 9.62%

better: 7.78%
worse: 3.29%

better: 5.66%
worse: 6.15%

better: 8.58%
worse: 1.16% - better: 8.97%

worse: 0.87%
better: 9.58%
worse: 0.97%

better: 8.65%
worse: 2.45%

ETF better: 0.58%
worse: 18.7%

better: 0.58%
worse: 18.6%

better: 0.81%
worse: 19.7%

better: 0.84%
worse: 14.8%

better: 0.84%
worse: 14.86%

better: 1.40%
worse: 5.02%

better: 1.21%
worse: 9.80%

better: 2.32%
worse: 3.00%

better: 0.87%
worse: 8.97% - better: 1.45%

worse: 0.95%
better: 2.63%
worse: 4.54%

Potts’ better: 0.46%
worse: 19.1%

better: 0.46%
worse: 19.0%

better: 0.68%
worse: 20.1%

better: 0.68%
worse: 15.1%

better: 0.68%
worse: 15.2%

better: 1.09%
worse: 5.21%

better: 1.14%
worse: 10.2%

better: 2.19%
worse: 3.37%

better: 0.97%
worse: 9.58%

better: 0.95%
worse: 1.45% - better: 2.22%

worse: 4.63%

LD better: 1.13%
worse: 17.3%

better: 1.13%
worse: 17.3%

better: 1.26%
worse: 18.2%

better: 1.65%
worse: 13.7%

better: 1.64%
worse: 13.7%

better: 3.64%
worse: 5.35%

better: 2.54%
worse: 9.23%

better: 4.23%
worse: 3.00%

better: 2.45%
worse: 8.65%

better: 4.54%
worse: 2.63%

better: 4.63%
worse: 2.22% -

2Each cell describes the percentage of cases where the heuristic from the header led to a feasible solution when the one from the leftmost column did not.

The performance of the heuristics plotted against different
metrics is shown in Figure 3. In addition to the individual
heuristics, the combined metric (), meaning the percentage
of workflows solved by at least one of the heuristics, is also
depicted in this figure. We have combined the EQS, EQF and
PD heuristics into a single plot line () because they show
very similar performance. The standard deviation is shown
as small error bars in this plot. We also combined the EQS-
TDMA and EQF-TDMA measurements () for the same
reason. Overall, the soft real-time deadline assignment heuris-
tics () are the worst performing methods. Introducing
hidden levels for the EQS-TDMA and EQF-TDMA heuristics
(), as described in Section IV-A, offers roughly a 5%
increase in efficiency but does not make the heuristics com-
petitive. Our proposed ERT-LFT heuristic () is the best-
performing deadline assignment heuristic in our evaluation
and consistently outperforms the MD () and HEFT ()
scheduling heuristics in terms of efficiency. However, the
ERT-LTF heuristic is only competitive with more effective
heuristics, such as the adapted Potts’ heuristic (), for easier
problems with a smaller number of jobs in the workflow or a
small number of machines in the network (Figure 3 a and b).

In general, the difficulty of synthesizing schedules for
workflow and device combination is determined by the number
of jobs in the workflow (Figure 3 a), the number of machines
in the network (Figure 3 b) and the average schedule utilization
of the machines after the workflow tasks have been assigned
to them (Figure 3 f). The combination of heuristics ()
still shows a high overall efficiency when the number of
machines or the number of jobs in the workflow is increased.
By combining several heuristics the decreasing efficiency of
the individual heuristics in the aforementioned cases can be
compensated because each heuristic is exploring different
areas of the total search space. This is true to a lesser degree
for problems with high schedule utilization, as even a single
wrong task ordering can invalidate the overall schedule in such
cases. Problems with a lower utilization offer more flexibility
in this regard. However, the efficiency of combined heuristics
is over 93% even for those cases with the highest utilization.

There was a difference between the three best performing
heuristics: ETF () and Potts’ () are more capable of
dealing with high-load cases than the DSC heuristic ()
which shows comparable performance in most other cases
(Figure 3 f). The LD heuristic () is often close to this group
but does not perform as well with larger workflow sizes. The
amount of edges in a workflow has little influence on the per-
formance of the heuristics (Figure 3 c). Realistic examples are
probably closer to the lower end of the edge-percentage scale:
100% would denote a fully connected DAG with n ∗ (n− 1)
edges for a DAG with n nodes. The combination of heuristics
also has stable performance, regardless of the number of levels
in a workflow (Figure 3 d). The shape of the workflow graph
has little influence on the efficiency of the heuristics overall.
The graphs generated by the layer-by-layer method are more
difficult for most heuristics, however Potts’ heuristic ()
is able to compensate for this, leading to a continued high
efficiency of the combined metric (Figure 3 b).

Table I shows a pairwise comparison of all heuristics on
the entire benchmark set. Even the best heuristics (Potts’ or
ETF) are unable to find a solution for the scheduling problem
in some cases were the overall worst heuristics (EQS, EQF
or PD) are successful. This fact is the basis for our approach
which uses a combination of different heuristics in succession.
This also justifies the inclusion of the LD heuristics with a
relatively high run-time cost (Table II). The LD heuristic,
however, explores a different area of the search space than
many other heuristics, meaning it has the highest number of
unique solutions (4363) generated by any heuristic. DSC and
Potts’ follow in second and third place with 2876 and 2393
unique solutions, respectively. ETF and ERT-LFT also have
a relatively high number of unique solutions with 1206 and
1197, respectively. The remaining heuristics have between 400
to 200 unique solutions while EQS and EQF only have 83 and
81, respectively, unique solutions.

The use of heuristic always implies a trade off of better run-
time characteristics for reduced optimality. Table II shows the
geometric mean of the heuristics’ performance as well as the
run time of the Gurobi MIP-solver. The measurements were

TABLE II: Geometric Means of the Heuristic Runtimes

EQS EQF PD EQS-TDMA EQF-TDMA Propagate HEFT DSC MD ETF Potts’ LD Gurobi

16 Tasks 0.04 ms 0.04 ms 0.04 ms 0.06 ms 0.06 ms 0.14 ms 0.10 ms 0.12 ms 0.24 ms 0.12 ms 0.19 ms 0.77 ms 7.15 ms
32 Tasks 0.10 ms 0.09 ms 0.09 ms 0.12 ms 0.12 ms 0.52 ms 0.22 ms 0.28 ms 0.64 ms 0.38 ms 0.65 ms 4.11 ms 57.7 ms
48 Tasks 0.16 ms 0.16 ms 0.16 ms 0.20 ms 0.19 ms 1.23 ms 0.41 ms 0.53 ms 1.13 ms 0.69 ms 1.49 ms 11.2 ms 196 ms
64 Tasks 0.24 ms 0.24 ms 0.24 ms 0.28 ms 0.28 ms 2.37 ms 0.66 ms 0.80 ms 1.67 ms 1.09 ms 2.78 ms 23.5 ms 486 ms

obtained on an Intel Core i7-3930K. It is apparent that the
heuristics outperform the MIP-solver by two to three orders of
magnitude. Even heuristics with a higher run-time complexity,
such as the LD heuristic or Potts’ heuristic, have a significantly
shorter run time than the solver. This situation supports our
argument to combine heuristics. The cumulative run time
distribution of the DSC and Potts’ heuristic as well as the
MIP-solver is shown in Figure 4. DSC’s run time only varies
in a narrow band since it is a relatively simple list scheduling
algorithm. Contrastingly, Potts’ run time varies more because
it possibly performs multiple scheduling iterations. The solver
has the largest spread, ranging from under 50ms to over 100 s
for 64 job workflows, because it explores the entire possible
state space.

0.1ms 1ms 10ms 100ms 1s 10s 100s
0%

20%

40%

60%

80%

100%

RuntimeC
u
m
u
la
ti
ve

d
is
tr
ib
u
ti
o
n
fu
n
ct
io
n

16 tasks, DSC 16 tasks, Potts 16 tasks, Gurobi
64 tasks, DSC 64 tasks, Potts 64 tasks, Gurobi

7.
15
m
s

48
6m

s

0.
19
m
s

2.
78
m
s

0.
12
m
s

0.
80
m
s

Fig. 4: Cumulative run time distribution

VI. CONCLUSIONS AND FUTURE WORK

We have presented a heuristics-based approach for generat-
ing schedule-based service choreographies for hard real-time
control loops without a central point of control. Our evaluation
shows that a combination of heuristics can solve over 99% of
1.2 million test cases. The heuristics proved to be, on average,
two to three orders of magnitude faster than an approach
based on an MIP satisfiability solver. Hence, a combination
of heuristics is a feasible choice when the run-time of the
scheduling method is relevant. One such use case would be an
interactive tool that supports engineers in deployment planning
and run time budgeting. In future work, we will develop a
prototype for such a tool. We will also evaluate the automatic
allocation of tasks to machines.

REFERENCES

[1] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, “How
virtualization, decentralization and network building change the manu-
facturing landscape: An industry 4.0 perspective,” WASET Int. J. Mech.,
Aerospace, Ind. and Mechatronics Eng., vol. 8, no. 1, Jan 2014.

[2] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” IEEE Trans. Ind. Informat., vol. 1, no. 1, Feb 2005.

[3] P. Danielis, J. Skodzik, V. Altmann, E. Schweissguth, F. Golatowski,
D. Timmermann, and J. Schacht, “Survey on real-time communication
via ethernet in industrial automation environments,” in ETFA, Sept 2014.

[4] S. Voss and B. Schatz, “Deployment and scheduling synthesis for mixed-
critical shared-memory applications,” in ECBS, 2013.

[5] F. Jammes, B. Bony, P. Nappey, A. Colombo, J. Delsing, J. Eliasson,
R. Kyusakov, S. Karnouskos, P. Stluka, and M. Till, “Technologies
for SOA-based distributed large scale process monitoring and control
systems,” in IECON, 2012.

[6] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Tim-
mermann, “Implementing powerful web services for highly resource-
constrained devices,” in PERCOM Workshops, March 2011.

[7] N. Kaur, C. McLeod, A. Jain, R. Harrison, B. Ahmad, A. Colombo, and
J. Delsing, “Design and simulation of a SOA-based system of systems
for automation in the residential sector,” in ICIT, 2013.

[8] F. Jammes, H. Smit, J. Lastra, and I. Delamer, “Orchestration of service-
oriented manufacturing processes,” in ETFA, Sept 2005.

[9] B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed
soft real-time system,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 12,
1997.

[10] J. Jonsson and K. G. Shin, “Robust adaptive metrics for deadline
assignment in distributed hard real-time systems,” J. Real-Time Syst.,
vol. 23, no. 3, 2002.

[11] C. Potts, “Analysis of a heuristic for one machine sequencing with
release dates and delivery times,” Operations Research, no. 6, 1980.

[12] T. Kothmayr, A. Kemper, A. Scholz, and J. Heuer, “Synthesizing
schedules through heuristics for hard real-time workflows,” in ICIT,
2015.

[13] T. Kothmayr, A. Kemper, A. Scholz, and J. Heuer, “Machine ballets
don’t need conductors: Towards scheduling based service choreographies
in a real-time SOA for industrial automation,” in ETFA, 2014.

[14] OASIS, “Devices profile for web services specification (version 1.1),”
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01, July 2009.

[15] OPC Foundation, “OPC unified architecture (OPC UA) specifiations,”
http://www.opcfoundation.org/UA, 2008.

[16] G. Candido, F. Jammes, J. de Oliveira, and A. Colombo, “SOA at device
level in the industrial domain: Assessment of OPC UA and DPWS
specifications,” in INDIN, July 2010.

[17] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - service infrastructure
for real-time embedded networked devices: A service oriented frame-
work for different domains,” in ICN/ICONS/MCL, April 2006.

[18] J.-F. Martı́nez, M. López, V. Hernández, K. Jean-Marie, A.-B. Garcı́a,
L. López, C. Herrera, and C.-J. Sánchez-Alarcos, “A security architec-
tural approach for DPWS-based devices,” in CollECTeR Ibéroamérica,
2008.

[19] R. Checcozzo, F. Rusina, L. Mangeruca, A. Ballarino, C. Abadie,
A. Brusaferri, R. Harrison, and R. Monfared, “RI-MACS: An innovative
approach for future automation systems,” IJMMS, vol. 2, no. 3, 2009.

[20] L. Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and
D. Savio, “SOCRADES: A web service based shop floor integration
infrastructure,” in The Internet of Things, ser. LNCS. Springer, 2008.

[21] G. Starke, T. Kunkel, and D. Hahn, “Flexible collaboration and control of
heterogeneous mechatronic devices and systems by means of an event-
driven, SOA-based automation concept,” in ICIT, 2013.

[22] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM CSUR, vol. 43, no. 4, Oct. 2011.

[23] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling
precedence graphs in systems with interprocessor communication times,”
SIAM J. on Compututing, vol. 18, no. 2, Apr 1989.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, Mar 2002.

[25] M.-Y. Wu and D. Gajski, “Hypertool: A programming aid for message-
passing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 3, Jul
1990.

[26] T. Yang and A. Gerasoulis, “DSC: Scheduling parallel tasks on an
unbounded number of processors,” IEEE Trans. Parallel Distrib. Syst.,
vol. 5, no. 9, Sep 1994.

[27] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
SIMUTools, 2010.

