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Overview

• caches and atomics
• list-based set
• memory reclamation
• Adaptive Radix Tree
• B-tree
• Bw-tree
• split-ordered list
• hardware transactional memory
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Caches

modern CPUs consist of multiple CPU cores and
• per-core registers
• per-core write buffers
• per-core caches (L1, L2)
• shared cache (L3)
• shared main memory
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Cache Organization
• caches are organized in fixed-size chunks called cache lines
• on Intel CPUs a cache line is 64 bytes
• data accesses go through cache, which is transparently managed by the CPUs
• caches implement a replacement strategy to evict pages
• associativity: how many possible cache locations does each memory location have?

0
64

...

128
192

memory cache
(2-way associative)



5 / 78

Synchronizing Data Structures Caches

Cache Coherency Protocol

• although cores have private caches, the CPU tries to hide this fact
• CPU manages caches and provides the illusion of a single main memory using a cache

coherency protocol
• example: MESI protocol, which has the following states:

I Modified: cache line is only in current cache and has been modified
I Exclusive: cache line is only in current cache and has not been modified
I Shared: cache line is in multiple caches
I Invalid: cache line is unused

• Intel uses the MESIF protocol, with an additional Forward state
• Forward is a special Shared state indicating a designated “responder”
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Optimizations

• both compilers and CPUs reorder instructions, eliminate code, keep data in register, etc.
• these optimizations are sometimes crucial for performance
• for single-threaded execution, compilers and CPUs guarantee that the semantics of the

program is unaffected by these optimizations (as if executed in program order)
• with multiple threads, however, a thread may observe these “side effects”
• in order to write correct multi-threaded programs, synchronization primitives must be used
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Example

int global (0);

void thread1 () {
while (true) {

while ( global %2 == 1); // wait
printf ("ping\n");
global ++;

}
}

void thread2 () {
while (true) {

while ( global %2 == 0); // wait
printf ("pong\n");
global ++;

}
}
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C++11 Memory Model

• accessing a shared variable by multiple threads where at least thread is a writer is a race
condition

• according to the C++11 standard, race conditions are undefined behavior
• depending on the compiler and optimization level, undefined behavior may cause any

result/outcome
• to avoid undefined behavior when accessing shared data one has to use the std::atomic

type1

• atomics provide atomic load/stores (no torn writes), and well-defined ordering semantics

1std::atomic is similar to Java’s volatile keyword but different from C++’s volatile
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Atomic Operations in C++11

• compare-and-swap (CAS): bool std::atomic_compare_exchange_strong(T&
expected, T desired)

• there is also a weak CAS variant that may fail even if expected equals desired, on
x86-64 both variants generate the same code

• exchange: std::exchange(T desired)
• arithmetic: addition, subtraction
• logical: and/or/xor
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Naive Spinlock (Exchange)

struct NaiveSpinlock {
std :: atomic <int > data;

NaiveSpinlock () : data (0) {}

void lock () {
while (data. exchange (1)==1);

}

void unlock () {
data.store (0); // same as data = 0

}
};
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Naive Spinlock (CAS)

struct NaiveSpinlock {
std :: atomic <int > data;

NaiveSpinlock () : data (0) {}

void lock () {
int expected ;
do {

expected = 0;
} while (! data. compare_exchange_strong (expected , 1));

}

void unlock () {
data.store (0); // same as data = 0

}
};
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Sequential Consistency and Beyond

• by default, operations on std::atomic types guarantee sequential consistency
• non-atomic loads and stores are not reordered around atomics
• this is often what you want
• all std::atomic operations take one or two optional memory_order parameter(s)
• allows one to provide less strong guarantees (but potentially higher performance), the most

useful ones on x86-64 are:
I std::memory_order::memory_order_seq_cst:

sequentially consistent (the default)
I std::memory_order::memory_order_release (for stores):

may move non-atomic operations before the store (i.e., the visibility of the store can be
delayed)

I std::memory_order::memory_order_relaxed:
guarantees atomicity but no ordering guarantees2

• nice tutorial: https://assets.bitbashing.io/papers/lockless.pdf

2sometimes useful for data structures that have been built concurrently but are later immutable

https://assets.bitbashing.io/papers/lockless.pdf
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Spinlock
struct Spinlock {

std :: atomic <int > data;
Spinlock () : data (0) {}

void lock () {
for ( unsigned k = 0; ! try_lock (); ++k)

yield(k);
}

bool try_lock () {
int expected = 0;
return data. compare_exchange_strong (expected , 1);

}

void unlock () {
data.store (0, std :: memory_order :: memory_order_release );

}

void yield ();
};
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Yielding

// adapted from Boost library
void Spinlock :: yield( unsigned k) {

if (k < 4) {
} else if (k < 16) {

_mm_pause ();
} else if ((k < 32) || (k & 1)) {

sched_yield ();
} else {

struct timespec rqtp = { 0, 0 };
rqtp. tv_sec = 0;
rqtp. tv_nsec = 1000;
nanosleep (&rqtp , 0);

}
}
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Lock Flavors

• there are many different lock implementations
• C++: std::mutex, std::recursive_mutex
• pthreads: pthread_mutex_t, pthread_rwlock_t
• on Linux blocking locks are based on the futex system call
• https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Mutex_Flavors.html:

TBB type Scalable Fair Recursive Long Wait Size
mutex OS dependent OS dependent no blocks ≥ 3 words
recursive mutex OS dependent OS dependent yes blocks ≥ 3 words
spin mutex no no no yields 1 byte
speculative spin mutex HW dependent no no yields 2 cache lines
queuing mutex yes yes no yields 1 word
spin rw mutex no no no yields 1 word
speculative spin rw mutex HW dependent no no yields 3 cache lines
queuing rw mutex yes yes no yields 1 word
null mutex moot yes yes never empty
null rw mutex moot yes yes never empty

https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Mutex_Flavors.html
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Atomics on x86-64

• atomic operations only work on 1, 2, 4, 8, or 16 byte data that is aligned
• atomic operations use lock instruction prefix
• CAS: lock cmpxchg
• exchange: xchg (always implicitly locked)
• read-modify-write: lock add
• memory order can be controlled using fences (also known as barriers):

_mm_lfence(), _mm_sfence(), _mm_mfence()
• locked instructions imply full barrier
• fences are very hard to use, but atomics generally make this unnecessary
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x86-64 Memory Model

• x86-64 implements Total Store Order (TSO), which is a strong memory model
• this means that x86 mostly executes the machine code as given
• loads are not reordered with respect to other loads, writes are not reordered with respect to

other writes
• however, writes are buffered (in order to hide the L1 write latency), and reads are allowed

to bypass writes
• a fence or a locked write operations will flush the write buffer (but will not flush the cache)
• important benefit from TSO: sequentially consistent loads do not require fences
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Weakly-Ordered Hardware

• many microarchitectures (e.g., ARM) are weakly-ordered
• on the one hand, on such systems many explicit fences are necessary
• on the other hand, the CPU has more freedom to reorder
• ARMv8 implements acquire/release semantics in hardware (lda and str instructions)
• https://en.wikipedia.org/wiki/Memory_ordering:

Alpha ARM IBM SPARC Intel
v7 POWER zArch RMO PSO TSO x86 x86-64 IA-64

Loads reord. after loads Y Y Y Y Y
Loads reord. after stores Y Y Y Y Y
Stores reord. after stores Y Y Y Y Y Y
Stores reord. after loads Y Y Y Y Y Y Y Y Y Y
Atomic reord. with loads Y Y Y Y Y
Atomic reord. with stores Y Y Y Y Y Y
Dependent loads reord. Y
Incoh. instr. cache pipel. Y Y Y Y Y Y Y Y

https://en.wikipedia.org/wiki/Memory_ordering
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Concurrent List-Based Set

• operations: insert(key), remove(key), contains(key)
• keys are stored in a (single-)linked list sorted by key
• head and tail are always there (“sentinel” elements)

head
7 42

tail
-∞ ∞
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Why CAS Is Not Enough

head
7 42

tail
-∞ ∞

• thread A: remove(7)
• thread B: insert(9)
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Coarse-Grained Locking

• use a single lock to protect the entire data structure

+ very easy to implement
− does not scale at all
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Lock Coupling

• also called “hand-over-hand locking” or “crabbing”
• hold at most two locks at a time
• interleave lock acquisitions/release pair-wise
• may use read/write locks to allow for concurrent readers

+ easy to implement
+ no restarts
− does not scale
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Optimistic

• “trust, but verify”
• traverse list optimistically without taking any locks
• lock 2 nodes (predecessor and current)
• validate: traverse list again and check that predecessor is still reachable and points to

current
• if validation fails, unlock and restart

+ lock contention unlikely
− must traverse list twice
− readers acquire locks
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Optimistic Lock Coupling

• general technique that can be applied to many data structures (e.g., ART, B-tree)
• associate lock with update counter
• write:

I acquire lock (exclude other writers)
I increment counter when unlocking
I do not acquire locks for nodes that are not modified (traverse like a reader)

• read:
I do not acquire locks, proceed optimistically
I detect concurrent modifications through counters (and restart if necessary)
I can track changes across multiple nodes (lock coupling)

+ easy to implement
+ scalable
− restarts
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Non-Blocking Algorithms

• killing a thread at any point of time should not affect consistency of the data structure
(this precludes locks)

• non-blocking data structures may be beneficial for (soft) real-time applications
• classification:

I wait-free: every operation is guaranteed to succeed (in a constant number of steps)
I lock-free: overall progress is guaranteed (some operations succeed, while others may not finish)
I obstruction-free: progress is only guaranteed if there is no interference from other threads
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Read-Optimized Write Exclusion (Lazy)

• contains is wait-free
• add/remove traverse list only once (as long as there is no contention)
• add marker to each node for logically deleting a key
• invariant: every unmarked node is reachable
• contains: no need to validate; if a key is not found or is marked, the key is not in the set
• add/remove:

1. lock predecessor and current
2. check that both are unmarked and that predecessor points to current
3. remove marks first, then updates next pointer of predecessor

+ no restarts
+ scalable
− insert/remove lock
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Lock-Free List

• insert and remove are lock-free, contains is wait-free
• remove: marks node for deletion, but does not physically remove it
• marker is stored within the next pointer (by stealing a bit of the pointer)
• insert and remove:

I do not traverse marked node, but physically remove it during traversal using CAS
I if this CAS fails, restart from head

• contains traverses marked nodes (but needs same check as Lazy variant)

+ contains always succeeds
+ scalable
− insert/remove may restart
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Synchronization Paradigms

complexity scalability overhead
Coarse-Grained Locking + -- +
Lock Coupling + - ˜
Optimistic - + -
Optimistic Lock Coupling + + +
ROWEX - + +
Lock-Free -- ++ --
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Memory Reclamation for Lock-Free Data Structures

• after deleting a node in a lock-free data structure, readers might still be accessing that node
• freeing/reusing that node immediately can cause correctness problems and/or crashes
• one must not physically delete a node unless it is ensured that no threads can access that

node
• how long should one wait until the node is physically deleted?
• garbage-collected languages usually do not have this particular problem
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Reference Counting

• associate every node with an atomic counter
• effectively results in similar behavior as locks

+ easy to use
− does not scale
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Hazard Pointers

• observation: most lock-free operations only require a bounded number of node pointers at
any point in time

• during traversal, one can store these hazard pointers into thread-local locations
• before physically removing a node, check if any thread has a hazard pointer referencing

that node

+ non-blocking
− high overhead due to required fences
− error-prone (requires invasive changes to data structure)
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Epoch-Based Memory Reclamation

• global epoch counter (incremented infrequently)
• per-thread, local epoch counters
• before every operation: enter epoch by setting local epoch to global epoch
• after every operation: set local epoch to ∞ indicating that this thread is not accessing the

data structure
• tag nodes to be deleted with current global epoch
• defer physically deleting nodes
• it is safe deleting nodes are older than the minimum of all local epochs

+ low overhead
+ no need to change data structure code
− a single slow/blocking thread may prevent any memory reclamation
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ABA Problem

• a compare-and-swap on a pointer structure may succeed even though the pointer has been
changed in the mean time (from A to B back to A)

• this is a correctness issue for some lock-free data structures (e.g., queues)
• whether this problem occurs depends on data structure and the memory reclamation

strategy
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Adaptive Radix Tree (ART)

Node256

0 1 2
…

3 255

child pointer

4 5

13 129130

key child pointerNode4

0 1 2 3 0 1 2 3

3 8 9 ……

key child pointerNode16

255

0 1 2 0 1 2 1515

Node48

0 1 2
… …

child index child pointer

3 255 47210

Header prefixCount count type prefix

(in front of
each node) 4 3 N4 0 0 0 0

TIDTIDTID TID

TID
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Path Compression and Lazy Expansion

B

A

R Z

F

O

O

lazy
expansion

path compression

remove path
to single leaf

merge one-way node
     into child node
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Lock Coupling

• easy to apply to ART
• modifications only change 1 node and (potentially) its parent
• can use read/write locks to allow for more concurrency
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Optimistic Lock Coupling

• add lock and version to each node
• how to detect that root node changed?

1. extra optimistic lock for root pointer (outside of any node)
2. always keep the same Node256 as root node (similar to static head element in list-based set)
3. after reading the version of the current root, validate that the root pointer still points to this

node



38 / 78

Synchronizing Data Structures Adaptive Radix Tree

Optimistic Lock Coupling (2)

traditional optimistic

1. lock node A
2. search node A

3. lock node B
4. unlock node A
5. search node B

6. lock node C
7. unlock node B
8. search node C
9. unlock node B

A

B

C
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Optimistic Lock Coupling (2)

traditional optimistic

v3

v7

v5

1. lock node A
2. search node A

3. lock node B
4. unlock node A
5. search node B

6. lock node C
7. unlock node B
8. search node C
9. unlock node B

A

B

C
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Optimistic Lock Coupling (2)

traditional optimistic

v3

v7

v5

1. read version v3
2. search node A

1. lock node A
2. search node A

3. lock node B
4. unlock node A
5. search node B

6. lock node C
7. unlock node B
8. search node C
9. unlock node B

A

B

C
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Optimistic Lock Coupling (2)

traditional optimistic

v3

v7

v5

1. read version v3
2. search node A

3. read version v7
4. re-check version v3
5. search node B

1. lock node A
2. search node A

3. lock node B
4. unlock node A
5. search node B

6. lock node C
7. unlock node B
8. search node C
9. unlock node B

A

B

C
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Optimistic Lock Coupling (2)

traditional optimistic

v3

v7

v5

1. read version v3
2. search node A

3. read version v7
4. re-check version v3
5. search node B

6. read version v5
7. re-check version v7
8. search node C
9. re-check version v5

1. lock node A
2. search node A

3. lock node B
4. unlock node A
5. search node B

6. lock node C
7. unlock node B
8. search node C
9. unlock node B

A

B

C
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Lock Coupling Vs. Optimistic Lock Coupling

lookup(key, node, level, parent)
readLock(node)
if parent != null

unlock(parent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)

unlock(node)
return null // key not found

// find child
nextNode = node.findChild(key[level])

if isLeaf(nextNode)
value = getLeafValue(nextNode)
unlock(node)
return value // key found

if nextNode == null
unlock(node)
return null // key not found

// recurse to next level
return lookup(key, nextNode, level+1, node)

lookupOpt(key, node, level, parent, versionParent)
version = readLockOrRestart(node)
if parent != null

readUnlockOrRestart(parent, versionParent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)

readUnlockOrRestart(node, version)
return null // key not found

// find child
nextNode = node.findChild(key[level])
checkOrRestart(node, version)
if isLeaf(nextNode)

value = getLeafValue(nextNode)
readUnlockOrRestart(node, version)
return value // key found

if nextNode == null
readUnlockOrRestart(node, version)
return null // key not found

// recurse to next level
return lookupOpt(key, nextNode, level+1, node, version)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20



44 / 78

Synchronizing Data Structures Adaptive Radix Tree

Insert using Optimistic Lock Coupling
insertOpt(key, value, node, level, parent, parentVersion)

version = readLockOrRestart(node)
if !prefixMatches(node, key, level)

upgradeToWriteLockOrRestart(parent, parentVersion)
upgradeToWriteLockOrRestart(node, version, parent)
insertSplitPrefix(key, value, node, level, parent) 
writeUnlock(node)
writeUnlock(parent)
return

nextNode = node.findChild(key[level])
checkOrRestart(node, version)
if nextNode == null

if node.isFull()
upgradeToWriteLockOrRestart(parent, parentVersion)
upgradeToWriteLockOrRestart(node, version, parent)
insertAndGrow(key, value, node, parent)
writeUnlockObsolete(node)
writeUnlock(parent)

else
upgradeToWriteLockOrRestart(node, version)
readUnlockOrRestart(parent, parentVersion, node)
node.insert(key, value)
writeUnlock(node)

return
if parent != null

readUnlockOrRestart(parent, parentVersion)
if isLeaf(nextNode)

upgradeToWriteLockOrRestart(node, version)
insertExpandLeaf(key, value, nextNode, node, parent)
writeUnlock(node)
return

// recurse to next level
insertOpt(key, value, nextNode, level+1, node, version)
return

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
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ART with ROWEX

• local modifications:
I make key and child pointers std::atomic (for readers)
I make Node4 and Node16 become unsorted and append-only

• grow/shrink a node:
1. lock node and its parent
2. create new node and copy entries
3. set parent pointer to the new node
4. mark old node as obsolete
5. unlock node and parent

• path compression:
I modify 16-byte prefix atomically (4-byte length, 12-byte prefix)
I add level field to each node

• much more complicated than OLC, requires invasive changes to data structure
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Path Compression with ROWEX
• insert(“AS”):

2

A

ARE ART

E T

I

I

 
prefixlevel

0

R 2
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ARE ART
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I

I

0

 

1  
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1. install
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I
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prefixlevel prefixlevel

prefixlevelprefixlevel
prefixlevel
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Insert (50M 8B Integers)
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Contention
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Synchronizing B-trees

• we assume B+-trees (inner nodes only store pointers, not values )
• for insert/delete there are two cases:

1. single-node change (normal, frequent case)
2. structure modification operation (during split/merge, infrequent)
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Lock Coupling

• must detect root node changes (e.g., additional lock)
• structure modification operations may propagate up multiple levels:

I eagerly split full inner nodes during traversal (good solution for fixed-size keys)
I restart operation from the root holding all locks
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Optimistic Lock Coupling

• optimistic lock coupling can be applied (after solving the problem discussed on the previous
slide)

• writers usually only lock one leaf node (very important for scalability)
• additional issues due to optimism:

I infinite loops: one has to ensure that the intra-node (binary) search terminates in the presence
of concurrent modifications

I segmentation faults/invalid behavior: a pointer read from a node may be invalid (additional
check needed)

• OLC is a good technique for B-trees
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B-Link Tree

• B-tree synchronization with only a single lock at a time (no coupling)
• observation: as long as there are only splits (no merges), the key that is being searched

may have moved to a right neighbor
• solution: add next pointers to inner and leaf nodes, operations may have to check

neighbor(s)
• fence keys may help determining whether it is necessary to traverse to neighbor
• the B-Link tree idea was very important when data was stored on disk but is also

sometimes used for in-memory B-tree synchronization (e.g., OLFIT)
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B-tree ROWEX?

• use B-Link tree idea to enable readers to handle concurrent splits
• lock-less per-node operations can be implemented using a design similar to slotted pages
• not possible to keep keys sorted (must scan all keys)
• not clear whether this is a useful design
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Lock-Free: Bw-tree

• slides courtesy of Andy Pavlo
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Transactional Memory

• implementing efficient synchronization protocols is very difficult and error-prone
• transactions are a very easy way to manage concurrency, they provide atomicity, isolation,

and concurrency
• it would be nice to have transactions directly in the programming language
• software transactional memory (STM): a language extension and/or software library

implementing transactions (large research field, often significant overhead)
• hardware transactional memory (HTM): the CPU implements transactions in hardware
• HTM was invented by Herlihy and Moss in 1993 (“Transactional Memory: Architectural

Support for Lock-Free Data Structures”)
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Hardware Transactional Memory Implementations

• Intel:
I introduced by Haswell microarchitecture (2013)
I disabled in firmware update due to (obscure) hardware bug
I enabled on Skylake

• IBM:
I Power8
I Blue Gene/Q (supercomputers)
I System z (mainframes)

• each of these implementations has different characteristics and a different ISA interface
• AMD does not implement HTM yet
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Intel Transactional Synchronization Extensions (TSX)

• Hardware Lock Elision (HLE): interface looks like mutex-based code, can be used HTM to
speed up existing locking code

• Restricted Transactional Memory (RTM): explicit transaction instructions
• on success/commit, both approaches make all memory changes visible atomically
• on abort, both approaches undo all register and memory changes
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Hardware Lock Elision (1)

• elide lock on first try optimistically
• start HTM transaction instead
• if a conflict happens, the lock is actually acquired and the transactions is restarted

Lock

optimistic parallel
execution

T1 T2

Lock

validation fails

T1 T2

Lock

serial execution

T1

T2
T3
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Using Hardware Lock Elision

• exposed as special instruction prefixes (xacquire and xrelease), which are annotations
to load/store instructions

• prefixes are ignored on older CPUs: code still works on older CPUs and always acquires lock
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Hardware Lock Elision Example
struct SpinlockHLE {

int data;
SpinlockHLE () : data (0) {}

void lock () {
asm volatile ("1: movl $1 , %% eax \n\t"

" xacquire lock xchgl %%eax , (%0) \n\t"
" cmpl $0 , %% eax \n\t"
" jz 3f \n\t"
"2: pause \n\t"
" cmpl $1 , (%0) \n\t"
" jz 2b \n\t"
" jmp 1b \n\t"
"3: \n\t"
: : "r"(& data) : "cc", "%eax", " memory ");

}

void unlock () {
asm volatile (" xrelease movl $0 ,(%0) \n\t"

: : "r"(& data) : "cc", " memory ");
}

};
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Restricted Transactional Memory (RTM)

• begin transaction: unsigned int _xbegin()
• commit transaction: void _xend()
• test if inside a transaction: unsigned char _xtest()
• rollback transaction: void _xabort(const unsigned int errorCode)
• RTM transactions can be nested up to a limit (but no partial aborts)
• errorCode is 8-bit, becomes available to transaction handling code
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Hardware Lock Elision Example

struct NaiveRTMTransaction {

NaiveRTMTransaction () {
while (true) {

unsigned status = _xbegin ();
if ( status == _XBEGIN_STARTED ) {

return ; // transaction started successfully
} else {

// on transaction abort , control flow continues HERE
// status contains abort reason and error code

}
}

}

˜ NaiveRTMTransaction () {
_xend ();

}
};
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How is HTM implemented?
• local L1 cache (32KB) serves as a buffer for transactional writes and for tracking

transactional reads at cache line granularity (64 bytes)
• in addition to the L1, there is a larger read set tracking mechanism (similar to a bloom

filter)
• cache coherency protocol is slightly modified (e.g., extra T bit for each cache line?) in

order to detect read/write and write/write conflicts
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Limitations of Haswell’s HTM

• size (32KB) and associativity (8-way) of L1 cache limit transaction size
• interrupts, context switches limit transaction duration
• certain, rarely used instructions (and pause) always cause abort
• due the associativity and the birthday paradox the effective transactions size is smaller than

32KB (in particular for random writes)
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Lock Elision with RTM (1)
• due to the hardware limitations one must implement a non-transactional fallback path

when using RTM (aborts may be deterministic/non-transient)
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Lock Elision with RTM (2)
std :: atomic <int > fallBackLock (0);

struct RTMTransaction {
RTMTransaction (int max_retries = 5) {

int nretries = 0;
while (true) {

++ nretries ;
unsigned status = _xbegin ();
if ( status == _XBEGIN_STARTED ) {

if ( fallBackLock .load () == 0) // must add lock to read set
return ; // successfully started transaction

_xabort (0 xff ); // abort with code 0xff
}
// abort handler
if (( status & _XABORT_EXPLICIT ) && ( _XABORT_CODE ( status )==0 xff)

&& !( status & _XABORT_NESTED )) {
while ( fallBackLock .load ()==1) { _mm_pause (); }

}
if (nretries >= max_retries ) break;

}
fallbackPath ();

}
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Lock Elision with RTM (3)

void fallbackPath () {
int expected = 0;
while (! fallBackLock . compare_exchange_strong (expected , 1)) {

do { _mm_pause (); } while ( fallBackLock .load ()==1);
expected = 0;

}
}

˜ RTMTransaction () {
if ( fallBackLock .load ()==1)

fallBackLock = 0; // fallback path
else

_xend (); // optimistic path
}

}; // struct RTMTransaction
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How to Effectively Use HTM?

• once a cache line has been accessed, it cannot be removed from the transactional
read/write set

• as a result, lock coupling does not help reducing transaction footprint
• generally, one should use coarse-grained, elided HTM locks
• large data structures may be too large for effective HTM use
• ideal transaction granularity: not too small (transaction overhead), not too large (aborts)
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HTM Summary

+ easy to use
+ often good scalability (if transactions are not too large)
+ no special memory reclamation necessary
− scalability issues are hard to debug
− HLE is backwards-compatible but not scalable on older CPUs

• more information: Intel R© 64 and IA-32 Architectures Optimization Reference Manual,
Chapter 14
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Lock-Free Hash Table: Split-Ordered List

• operations: insert(key, value), remove(key), lookup(key)
• all entries are stored in a single lock-free list (see lock-free list-based set) sorted by the hash

value of the key
• dynamically growing array of pointers provides short cuts into this list to get expected O(1)

performance
• how to grow the array while other threads are active?
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Recursive Split Ordering (1)
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Recursive Split Ordering (1)
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Recursive Split Ordering (1)
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Recursive Split Ordering (2)

• key idea: store keys by bit-wise reverse hash



74 / 78

Synchronizing Data Structures Split-Ordered List

Insert

• array grows (by factor of two) when load factor becomes too high
• after growing, the items are not eagerly reassigned
• instead, buckets are lazily initialized on first access (by creating new shortcuts from parent

list entry/entries)
• an operation may trigger log2(n) splits (but O(1) expected)
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How to Implement the Array?

• two-level structure:
I fixed-size dictionary of (at most) 64 pointers
I array chunks of size 1, 2, 4, etc.

• enables constant-time random access using lzcnt
• initialize to 0 (e.g., using memset or mmap)
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How to Swap Bits?

• there is a hardware instruction for swapping bytes (uint64_t
__builtin_bswap64(uint64_t)), but not bits

• a fairly efficient way is to read each byte individually and use a (pre-computed) lookup
table for swapping each byte
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Deletion

• problem: deleting a node using CAS pointed to from a bucket does not work (because it is
also being pointed to from the list)
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Deletion

• problem: deleting a node using CAS pointed to from a bucket does not work (because it is
also being pointed to from the list)

• solution: for every split bucket, insert a special sentinel node into the list
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