
ARTful Skyline Computation for In-Memory
Database Systems

Maximilian E. Schüle, Alex Kulikov, Alfons Kemper, and
Thomas Neumann

Technical University of Munich
{m.schuele, alex.kulikov, alfons.kemper, thomas.neumann}@tum.de

Abstract. Skyline operators compute the Pareto-optimum on multi-
dimensional data inside disk-based database systems. With the arising
trend of main-memory database systems, pipelines process tuples in par-
allel and in-memory index structures, such as the adaptive radix tree,
reduce the space consumption and accelerate query execution.
We argue that modern database systems are well suited to progressive
skyline operators. In addition, space-efficient index structures together
with tree-based skyline algorithms improve the overall performance on
categorical input data. In this work, we parallelise skyline algorithms,
reduce their memory consumption and allow their integration into the
main-memory database system HyPer. In our evaluation, we show that
our parallelisation techniques scale linearly with every additional worker,
and that the adaptive radix tree reduces memory consumption in com-
parison to existing tree-based approaches for skyline computation.
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1 Introduction

The skyline algorithm finds interesting tuples within multi-dimensional data sets.
Specifically, these tuples form the Pareto-optimal set that contains only the best
tuples regarding all criteria. Formally, the output set is defined as all tuples that
are not dominated by any other tuple of the input set.

From a theoretical point of view, computing the skyline of a set of tuples
corresponds to the mathematical problem of finding the maxima of a set of
vectors [8]. A vector p ∈ Rn dominates another vector q ∈ Rn if p is at least as
good as q in every dimension, and superior in at least one:

p � q ⇔ ∀i ∈ [n].p[i] � q[i] ∧ ∃j ∈ [n].p[j] � q[j]. (1)

Börzsönyi et. al. [2] provided the first skyline implementations and an SQL
extension (see Listing 1.1). Their work compared the algorithm to a skyline
formed out of skyscrapers: only those are visible which are either closer (re-
garding the distance) or higher than any other to a specific viewing point. Even
though SQL-92 is capable of expressing skyline queries (see Listing 1.2), the



2 M. Schüle et al.

authors proposed an integration as an operator that executes optimised skyline
algorithms within the database system.

SELECT ∗ FROM i n p u t t a b l e i WHERE . . . GROUP BY . . . HAVING . . .
SKYLINE OF [DISTINCT ] d1 [MIN | MAX] , . . . , dn [MIN | MAX]
ORDER BY . . .

Listing 1.1. Skyline extension of SQL: d1, ... , dn are the dimensions; MIN and MAX
specify whether each dimension has to be minimised or maximised.

SELECT ∗ FROM i n p u t t a b l e q WHERE NOT EXISTS (
SELECT ∗ FROM i n p u t t a b l e p WHERE p . d1 <= q . d1 AND . . . AND p . dn<=q . dn

AND ( p . d1 < q . d1 OR . . . OR p . dn<q . dn ) )

Listing 1.2. Skyline query in SQL on a table inputtable with attributes d1, ... , dn.

We argue that integrated skyline operators can benefit from modern database
systems that offer in-memory index structures as well as pipelined tuple process-
ing. In the following, we integrate the naive-nested-loops skyline algorithm as an
operator into the main-memory database system HyPer [6]. As a native oper-
ator, it supports code-generation according to the producer-consumer concept,
that pushes tuples towards the parent operator in parallel pipelines. This enables
the parallelisation of progressive skyline algorithms that continuously produce
output. Furthermore, we optimise the space requirements for trie-based skyline
algorithms and parallelise all introduced implementations for multi-threaded ex-
ecution. In summary, this work’s contributions are:

– the integration of a skyline operator into the main-memory database system
HyPer following the producer-consumer model,

– a memory reduction for trie-based skyline computation on categorical data
due to the usage of the adaptive radix tree,

– the parallelisation of naive-nested-loops as well as tree-based skyline algo-
rithms within the context of database systems

– and an evaluation in terms of run time, memory usage and scalability that
compares naive-nested-loops to tree-based skyline algorithms.

This work is organised as follows: First, we give an overview of the underly-
ing main-memory database system with its adaptive radix tree and existing sky-
line algorithms. Hereafter, this paper proposes a novel skyline algorithm called
SARTS, which uses the adaptive radix tree for dominance checks. Afterwards,
parallelisation techniques are first explained and then applied to the given sky-
line algorithms. For the evaluation, we vary the number of input tuples as well
as the number of available threads.

2 Related Work

As this work combines main-memory database systems with skyline algorithms,
this section introduces the underlying operator concepts within modern database
systems and common skyline algorithms.
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2.1 Main-Memory Database Systems

HyPer [6,13,14] is an in-memory database system that introduced code-generation
according to the producer-consumer model. Instead of traditional Volcano-style
query execution [4], where the topmost operator iteratively demands the under-
lying ones to return tuples, operators in HyPer push tuples towards the parent
operator. Two functions, produce() and consume(), generate the corresponding
code using the LLVM compiler framework. During code-generation, produce()
is called recursively from top to bottom, then each call evokes a consume()

call on the parent node. This generates the code for processing tuples in par-
allel pipelines. We later integrate skyline as an operator that initiates parallel
pipelines.

The adaptive radix tree (ART) [9] is the in-memory index-structure used in
HyPer to retrieve tuples by their identifier. In contrast to a radix tree, the node’s
size is adaptive in order to reduce the memory consumption and improve the
caching performance. The ART offers four different node types for either four,
16, 48 or 256 keys and can replace various tries such as prefix-trees represented
by radix trees.

2.2 Skyline Algorithms

The naive-nested-loops (NNL) algorithm from the original paper [2] forms the
basis for our in-database implementation A nested loop compares each tuple
to each other one whether it is not dominated and therefore forms part of the
return set. To reduce the number of disk accesses, the block-nested-loops (BNL)
algorithm maintains a window in main-memory of all tuples considered for the
skyline to that point. The divide-and-conquer (DNC) algorithm partitions [16]
the tuples recursively and performs dominance checks when merging partitions.

Since its invention, skyline algorithms have been based on different data
structures and hardware [5]. This work mainly incorporates research on the
parallelisation of skyline algorithms [7,10,15,17] that produce progressive out-
put [11]. This facilitates the integration into database systems according to the
producer-consumer model.

Sorting-based algorithms such as Sort-Filter-Skyline (SFS) [3] or SaLSa [1]
pre-sort the input first before computing the skyline. Pre-sorted input allows
elements to be pruned which are worse. The skyline-using-tree-sorting (ST-S)
algorithm [12] is tuned for binary attribute values, as it stores tuples in a radix
tree called N-tree to perform dominance checks. In this work, we extend the
algorithm to support categorical data and replace the N-tree with the ART.

3 SARTS

This section presents SARTS (Skyline using ART Sorting-based), a novel sky-
line algorithm for categorical attributes. It improves the core concepts of ST-S
by implementing a more efficient indexing structure for dominance checks—the
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ART. As our proposed SARTS algorithm is based on the ST-S algorithm, we
first explain the extension of ST-S for categorical attributes, before we proceed
with the integration of the adaptive radix tree.

3.1 ST-S for Categorical Attributes

Every inner node of the N-tree in the ST-S algorithm, including the root, has
an array, which can hold as many children as there are possible attribute values.
Each path taken from the root to a leaf represents a tuple, which is assigned
a score. The score of a particular tuple t with n attributes is determined by a
scoring function with t[i] as the i-th attribute of the tuple:

score(t) :=

i<n∑
i=0

2n−i · t[i]. (2)

In each inner node, minScore and maxScore mark the boundaries for the tuple’s
possible score within branches descending from this node.
At the beginning, a monotonic function minC() or maxC() defines an order:

minC(t) :=
(

min
0≤i<n

(t[i]),

i<n∑
i=0

t[i]
)
. (3)

It consists of two components: a main comparison attribute, which is the smallest
value of all tuple’s attributes, and a tie-breaker that is the sum of all the tuple’s
attribute values. The ST-S algorithm (Algorithm 1) works as follows:

1. The tuples are presorted with minC() (line 1).
2. The threshold tuple tstop, undefined at the beginning, is later updated (lines

11-12) with knowledge of tuples that are part of the skyline.
3. The first tuple t0 from the presorted data set is always part of the skyline.

It gets inserted into the tree and is put out as part of the skyline (lines 3-5).
4. The following loop checks for every input tuple t whether it is dominated by

any tuple already in the skyline (line 8). The checks are carried out with the
help of the tree, which holds all the skyline tuples to date.

5. If a tuple t is dominated by some other tuple in the skyline, it is no longer
considered (line 8). Otherwise, it is inserted into the tree (line 9), so that it
is able to eliminate future, dominated tuples.

6. If the maximum attribute value of the new skyline tuple t is smaller than
the maximum attribute value of the threshold tstop, then the threshold is
updated (line 12), and now holds the value of t, until the next update occurs.

7. The algorithm stops as soon as all tuples left in the data set are a priori
dominated by the threshold (line 7).

8. If the maximum attribute value of the threshold tuple tstop is less than or
equal to the minimum attribute value of the current tuple t, then none of
the remaining, sorted tuples are part of the skyline.

Both the insert() and is dominated() operations have been slightly modified
from the original paper to deal with categorical attributes rather than binary
ones.
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Algorithm 1 ST-S Algorithm

Input: Tuple List T , Tree tree
Output: Skyline skyline

1: Sort T in-place using a monotonic function minC()

2: t0 ← first element of T
3: tstop ← t0
4: insert(t0, tree.root, 0)
5: Add t0 to skyline // t0 always part of skyline due to presorting
6: for each tuple t ∈ T\{t0} do
7: if max(tstop)≤ min(t) and tstop 6= t then return

8: if not is dominated(t, tree.root, 0, score(t)) then
9: insert(t, tree.root, 0)

10: Add t to skyline
11: if max(t) < max(tstop) then
12: tstop ← t

3.2 ART for Skyline

The interface of the ART has been kept similar to that of the N-Tree in ST-S.
This enables the very straightforward integration of the ART into the algorithm,
because the insert() and is dominated() operations still have the same signa-
ture as in ST-S. While insert() is slightly different from the original variant, the
is dominated() operation is almost identical to the one in ST-S. The insert()

operation for SARTS differs from the ST-S variant in this both finding the cor-
rect child to the current node and creating a new child are outsourced into two
separate functions: findChild() and newChild(). In addition to that, before a
new child can be created, the current node might first need to grow() to the
next-bigger type, in order to create space for the new child. The pseudo-code to
the insert() operation is given in Algorithm 2.

The main difference within the is dominated() operation is, similarly to
insert(), that it uses findChild() to determine the correct child for further
traversal.

In addition to that, just like the nodes of the N-Tree, the inner nodes of
the ART have to be extended by a minScore and a maxScore, and the leaf
nodes by the score attribute and an array of tupleIDs. This enables the faster
traversing of the tree during dominance checks, by skipping tree regions that
cannot dominate the current tuple.

4 Parallelisation

The following section presents the parallelisation approaches for traditional sky-
line algorithms, such as NNL and DNC 1, as well as for two of the newer algo-
rithms: ST-S and SARTS2. The corresponding source-code is publicly available.

1 https://gitlab.db.in.tum.de/alex_kulikov/skyline-computation
2 https://gitlab.db.in.tum.de/alex_kulikov/skyline-categorical

https://gitlab.db.in.tum.de/alex_kulikov/skyline-computation
https://gitlab.db.in.tum.de/alex_kulikov/skyline-categorical
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Algorithm 2 INSERT Operation for SARTS

Input: Tuple t, Node parent Node current, Level level, Attributes atts

1: if level = 0 then
2: node.minScore← 0
3: node.maxScore←

∑t.size − 1
i = 0 (2t.size − i · max(atts))

4: else if level != t.size then
5: node.minScore←

∑level − 1
i = 0 (2t.size − i · t[i])

6: node.maxScore← node.minScore +
∑t.size − 1

i = level (2t.size − i · max(atts))

7: if level = t.size then
8: node.score← score(t)
9: Append t.tupleID to node.tupleIDs

10: else
11: child← findChild(current, t[level])
12: if child is None then
13: if current.size != 256 then
14: grow(parent, current, t[level − 1])

15: child← newChild(current, t[level])

16: insert(t, current, child, level + 1)

4.1 Naive-/Block-Nested-Loops

Algorithm 3 Parallel NNL

Input: Tuple List T
Output: Skyline skyline

1: parallel for each tuple t ∈ T do
2: is not dominated←True
3: for each tuple d ∈ T\{t} do
4: if dominates(d, t) then
5: is not dominated←False
6: break
7: if is not dominated then
8: Add t to skyline

The main idea when parallelising the
naive-nested-loops algorithm is to use
the parallel for construct for the
outer loop of the algorithm. The inner
loop could also be taken for this pur-
pose, but then the code, which finds
itself in the outer loop but not in the
inner one would be running sequen-
tially, thus reducing the benefit of par-
allelising the code in the first place.
The pseudo-code notation of the par-
allelised version of naive-nested-loops
is given in Algorithm 3.

4.2 Divide-and-Conquer

Two different parallelisation techniques were applied to the divide-and-conquer
algorithm. Instead of applying a sequential sorting algorithm, parallel sort

sorts the elements using several worker threads simultaneously, and thus pro-
duces the result significantly faster than sequential functions for large data sets.
parallel sort is applied in two places within the DNC algorithm:

1. Finding the median. After sorting the tuples, the median of the data set is
taken to be the element located exactly in the middle of the sorted set.
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2. Determining the minimum for two dimensions. The skyline can be computed
by finding the minimum of the first subset and comparing it to all elements
of the second subset.

4.3 SARTS and ST-S

The parallelising of the ST-S and SARTS algorithms results in almost identical
implementations. As the interfaces of both trees are technically the same, the
algorithms were also parallelised via the same approach.

The main idea is to divide the original data set into as many partitions
as there are threads on the machine. One thread for each partition computes
the skyline of its tuples. Every thread receives its own tree structure to store
the tuples that are part of the skyline and to perform dominance checks. In
other words, the sequential version of SARTS (resp. ST-S) is simultaneously
applied to each of the partitions. As soon as the skyline of every partition has
been computed, the resulting skylines are merged to produce the final one. The
skylines of all partitions combined are much smaller than the original data set.
Therefore, the final merge does not take as much time as computing the entire
skyline from scratch.

In addition to the main parallelisation approach, presorting the tuples also
happens in parallel before the actual algorithm begins. As the original data set
tends to be very large in real-world applications, sorting it in parallel leads to a
very significant efficiency boost.

The skyline is computed similarly to the non-parallelised version, with one
major difference. Whenever a tuple that is definitely part of the skyline is stored,
it is not merely appended to some list of skyline tuples. Instead, it is stored into
a common sub results array, to which all skyline threads share access.

5 Evaluation

This section discusses the evaluation of the following algorithms: naive-nested-
loops (NNL), block-nested-loops (BNL), divide-and-conquer (DNC), ST-S and
SARTS. All the tests were conducted on a Linux Mint 18.2 machine offering an
Intel Core i7-5500U CPU with a 4096 KB cache and 8 GB DDR3L of main-
memory. As the tree-based skyline algorithms, such as ST-S and SARTS, are
restricted to categorical attributes, tests that include the algorithms ST-S and
SARTS were conducted using a limited set of integers as categories, ranging from
0 to 255. All other tests were performed with continuous attributes, represented
as double values.

5.1 Non-Progressive Algorithms

The non-progressive skyline types included in this work are the block-nested-
loops and the divide-and-conquer algorithms. In all three of the conducted tests,
BNL scales significantly better than DNC. It shows overall better performance
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with an increasing number of tuples, dimensions and also threads (Figure 1).
Herewith, the results are similar to the ones produced in the original paper [2],
which introduced BNL and DNC.
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Fig. 1. Run time of non-progressive algorithms by number of tuples (default: 5 dimen-
sions, 256 categories, 4 threads and 10,000 input tuples).

5.2 Progressive Algorithms

Naive-nested-loops can be both progressive and parallelisable and therefore com-
pared to the two newer algorithms ST-S and SARTS. As expected, for a rising
number of tuples, both ST-S and SARTS perform extremely well. As shown
in Figure 2, they significantly outperform naive-nested-loops with larger input.
This is not surprising, as ST-S and SARTS were specifically developed for large
categorical data sets. It is due to the efficient nature of the tree structures used
that dominance checks can be conducted very efficiently, and depend less on the
number of tuples than on the dimensionality of the data set.
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Fig. 2. Run time of progressive algorithms by number of tuples (default: 5 dimensions,
256 categories, 4 threads and 10,000 input tuples).

When looking at the results of scaling with dimensionality, the naive-nested-
loops algorithm significantly outperforms both parallelised and sequential ver-
sions of ST-S and SARTS. The reason for this is that radix-based tree structures—
N-Tree and ART—generally scale badly with longer keys. This is the trade-off
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they have to accept for very efficient scaling with the number of inserted ele-
ments. The longer the keys of the data set are, the higher the tree gets, and the
longer it takes to traverse the tree from top to bottom. In the application area
of skyline computation, the length of a key corresponds to the dimensionality
of a tuple. Hence, the more dimensions the tuples of a data set have, the less
efficient tree-based dominance checks become.

A comparison of progressive algorithms depending on the number of threads
available shows that both ST-S as well as SARTS outperform naive-nested-
loops. As expected, all parallelised algorithms scale with the number of available
threads.
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Fig. 3. Memory usage of ART and N-Tree by dimensionality and tuples (256 categories,
4 threads; left: 1000 input tuples, right: 5 dimensions).

Memory Usage The last two tests compare the main-memory usage of the
ART to that of the N-Tree. Figure 3 shows that the ART significantly consumes
less space than the N-Tree. The memory consumption is similar when using
multiple dimensions: While the ART already performs better than the N-Tree
for low number of dimensions, it generally scales much more efficiently with
high dimensionality. Thus, it can be concluded that the SARTS algorithm is
significantly more memory-efficient than ST-S due to the usage of the ART.

6 Conclusion

This work has integrated skyline algorithms as an operator inside the main-
memory database system HyPer according to the producer-consumer model.
As in-memory index structures improve look-up performance in main-memory
database systems, we replaced traditional radix trees by the adaptive radix tree
for fast skyline computation on categorical data. This called SARTS algorithm
displayed the same lookup performance as its ancestor algorithm, ST-S, but
was superior with regard to space consumption, due to adaptive nodes. We suc-
cessfully parallelised naive-nested-loops, divide-and-conquer and the tree-based
algorithms to allow scaling to multiple cores.
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